Семантика схематики

 

«…Повернуть ключ зажигания в положение Вкл.
Проверить напряжение на контакте 2 разъема C302.
Напряжение равно 4,92В или выше?
Если да, перейти к этапу 4.
Если нет, проверить наличие неисправных соединений…»

По мере усложнения электрических систем автопроизводители разрабатывают все новые стратегии и методы поиска неисправностей (см. описание выше), чтобы упростить жизнь механикам, осуществляющим диагностику автомобиля. Эти методы очень удобны и полезны, но порой сами механики забывают или не понимают логики процесса.

Поэтому важно, чтобы механик умел разбираться в электроцепях датчиков, интерпретировать напряжение сигналов и выяснять причины, которые вызывают появление кодов неисправности (DTC). В этой статье объясняется устройство электрических цепей переключателей входов ЭБУ и датчиков активного сопротивления, предлагаются простые рекомендации и подсказки по поиску неисправностей.

Что скрыто в корпусе блока управления

При изучении электросхемы можно открыть для себя нечто удивительное, что скрыто в блоке управления. Но зачастую подобные «открытия» возникают у механика уже в тот момент, когда автомобиль весит на подъемнике.

PowerTrain Control Module – Блок управления трансмиссией
Engine Coolant Temperature Sensor (ECT) – Датчик температуры охлаждающей жидкости двигателя
Manifold Absolute Pressure Sensor (MAP) – Датчик абсолютного давления во впускном коллекторе
Intake Air Temperature Sensor (IAT) – Датчик температуры впускного воздуха
Throttle Position Sensor (TP) – Датчик положения дроссельной заслонки

И хотя на схеме можно заметить много интересных вещей, наиболее важными для понимания являются подтягивающий (PU) и стягивающий (PD) резисторы (см. рис. 1). 

Понимание принципа действия этих компонентов и применение основных электрических правил поможет объяснить работу большинства датчиков и их цепей. Необходимо для себя уяснить, что переключатели входов или датчики активного сопротивления не генерируют напряжение, они лишь изменяют напряжение (или потенциал), которое измеряется ЭБУ. Все модули, в том числе блок управления двигателем (PCM), блок управления трансмиссией (TCM) и блок управления системами салона (BCM) — работают по одной и той же схеме. Указанные резисторы также позволяют контролировать выходные сигналы и работу других датчиков, но в этой статье эти функции резисторов не рассматриваются.

Основные правила

Подтягивающий и стягивающий резисторы используются в электронных устройствах для решения многих задач, но в основном для определения напряжения сигнала при срабатывании переключателя или датчика. Это позволяет блоку управления распознавать неисправности в электрических цепях. Сами резисторы расположены в блоке управления и подключены в цепь последовательно с переключателем или резистором активного сопротивления.

Блок управления измеряет напряжение между этими компонентами: обоими резисторами или между резистором и переключателем. Это позволяет блоку сделать вывод о сопротивлении датчика или переключателя. Без установки данных резисторов напряжение до и после датчика было бы неизменным вне зависимости от его сопротивления.

Чтобы разобраться в работе этих резисторов следует знать два основных электрических правила. Во-первых, положительное/отрицательное напряжение (электрический потенциал) концентрируется в зоне высокого сопротивления. Во-вторых, если оба резистора установлены последовательно, резистор с наибольшим сопротивлением либо не создает напряжения вовсе при замыкании накоротко, либо концентрирует максимальное напряжение (электрический потенциал).

Цепи с переключателями входов

На рис. 2 показан один переключатель в положение ВКЛ./замкнут и другой в положении ВЫКЛ./разомкнут. Эта цепь позволяет блоку управления и механику фиксировать напряжение, равное 0В, если переключатель замкнут и напряжение 5В, если переключатель разомкнут. Выключатель педали тормоза, выключатели дверей и окон работают согласно первому электрическому правилу.

Поскольку переключатель имеет максимальное сопротивление в разомкнутом состоянии, то на нем формируется максимальный положительный или отрицательный электрический потенциал. Поэтому и механик, и блок управления фиксируют напряжение 5В на одном из контактов переключателя.

И, напротив, мультиметр показывает напряжение 0В, если переключатель замкнут, поскольку происходит падение напряжения на резисторе 4Ом, которое в данный момент обладает наибольшим сопротивлением в этой цепи. Прибор не видит разности потенциалов и показывает 0В, если переключатель замкнут. В этом случае один провод цифрового вольтметра соединен с массой кузова или отрицательным выводом АКБ, а другой – с чувствительным контактом переключателя. В данном примере используется электроцепь с замыканием на массу и опорным напряжением 5В.

Некоторые цепи, наподобие той, которая рассматривается далее в статье, используют напряжения 12В.

Цепи с резисторами активного сопротивления

Второе электрическое правило, о котором говорилось ранее, проиллюстрировано на рис. 3. Здесь сопротивление второго резистора влияет на падение напряжения на первом резисторе. С ростом сопротивления этого резистора нарастает потенциал между резисторами, и, наоборот, снижение его сопротивления приводит к падению указанного потенциала. Подобная схема применяется в цепях резистивных датчиков, например, датчика температуры охлаждающей жидкости двигателя (ECT), датчика положения дроссельной заслонки (TPS) и датчика освещенности (ALS).

Low Reference – нулевой (низкий) опорный сигнал

В отличие от металлического проводника датчик ECT выполнен из полупроводникового материала, который снижает свое сопротивление по мере нарастания температуры. Поэтому сигнальное напряжение, фиксируемое блоком PCM, падает по мере роста температуры охлаждающей жидкости двигателя. Рост температуры приводит к снижению сопротивления датчика ECT, то есть к уменьшению потенциала между подтягивающим резистором (PU) и датчиком ECT.

Блок PCM способен интерпретировать сигнальное напряжение, то есть измерять температуру охлаждающей жидкости двигателя. Таким образом, блок PCM работает в режиме замкнутого контура управления и выполняет контроль токсичности отработанных газов.

Обычно, замок зажигания непосредственно направляет рабочий ток в электроцепи систем автомобиля. Но при наличии режима запуска двигателя по нажатию кнопки, противоугонной системы и других функций управления системами салона, ключ зажигания только выдает сигнал управления в ЭБУ, а не направляет в системы рабочий ток. Даже в современных системах пуска с ключом (без кнопки) применяется подобный вариант зажигания.

Здесь установлен отдельный резистор для каждого положения ключа зажигания. На рис. 4 показан 1,3кОм резистор в замке зажигания, который включен последовательно в цепь со стягивающим резистором (PD) в блоке BCM. Блок управления функциями салона (BCM) контролирует положение ключа зажигания по потенциалу между двумя резисторами. Как только BCM проинформировал блок ECM о том, что ключ зажигания находится в положение пуска, а рычаг переключения передач в положении остановки или нейтральном положении, блок ECM подает сигнал напряжения на реле стартера.

Circuit 1-4 –электроцепи 1-4.
Low Reference – нулевой (низкий) опорный сигнал

Возврат к списку



OBDII статья BMW OBD A2 BMW E46 Launch ICOM A2 ВАЗ ЭБУ BMW CAN CLIP ICOM A root для Launch комплекс FVDI Mazda Перепрограммирование PCM BMW DIS DoIP VIN-номер диагностика двигателя прошивка ISTA/P Видеоэндоскопы AEB OPEL-Insignia ЭБУ KTAG Consult 4 ICOM A1 x 431 круиз-контроль стоимость поста диагностики NEXT A Система экстренного то E-SYS WinKFP диагностические коды расширение памяти Launch Диагностика автомобилей AIRBAG PRO 2015 V автосканер Consult III Plus x 431 PRO ACC перепрограммироване увеличение памяти Next Слушаем двигатель BMW GT1 ENET X-431 диагностический сканер сканер Launch X 431 Диагностика подвески Adaptive Cruise Control D-CAN ROOT-права блок управления двигателем ICOM A3 x431 ADAS подготовка к работе цена поста диагностики Next A Сравнение диагностических адаптеров BMW ICOM EasyConnect doip дилерский сканер сколько стоит пост диагностики Launch X-431 Катушка зажигания Autonomous Emergency Braking DME Renault CAN CLiP дамп DME ICOM B x431 PRO ADAS Launch подробная инструкция что такое DoIP Nissan Consult 3 Форд BMW ICOM NEXT Ediabas iToolRadar и сканера BMW ICOM состав поста диагностики Launch X431 Компрессия двигателя DOIP Subaru двухстоечный подъемник для автосервиса INPA Адаптивный круиз-контроль ADAS Launch x 431 пост диагностики шина CAN ЭБУ BMW ICOM a2+b+c Honda HDS launch pro как работает DoIP специнструмент MOST Компьютерная диагностика BMW 318i Do IP VAS 5054A ODIS диагностика INPA K ADAS Launch x431 программатор ЭБУ